
                                

 

Artificial intelligence and machine learning—an introduction to the 
technology 

Produced in partnership with Alexander Korenberg, partner, and Nathalie Richards, trainee patent 
attorney, of Kilburn & Strode LLP 

This Practice Note explains the basics of artificial intelligence (AI) and machine learning (ML) technology. 

It covers: 
 

•  The history of AI and ML 
•  The importance of data 
•  Training an ML model 
•  Types of ML 
•  Considerations when selecting or assessing an ML algorithm 
•  Neural networks 
•  What is deep learning? 
•  Common neural network architectures 
•  Some examples of other commonly used ML algorithms 
•  Key challenges for AI and ML—transparency, explainability and bias 
•  Privacy and data protection 
•  Protecting AI technology 

This Practice Note does not consider legal and regulatory issues arising in connection with the use or devel-
opment of AI or ML technologies.  

 
The history of AI and ML 

 Although often thought of (and used) as a new exciting technology, AI has in fact been around for over 70 
years. While sometimes assumed to be incomprehensible to anyone without a specialism in computing, AI is 
built on relatively simple mathematical concepts. Even today, when it has advanced into more computational 
complex algorithms, it is important to remember that it is just that, mathematical concepts implemented in 
software and written by a person. 

 As aptly put by Gary Smith in The AI Delusion (OUP 2018) 237,  
 

‘The real danger of artificial intelligence is not that computers are smarter than us, but that we 
think [they] are’. 

 

A common point of confusion to those new to the world of ML is how terms like artificial intelligence, machine 
learning and deep learning fit together. 

Strictly speaking, ML refers to a subset of AI that enables a system to learn and operate from input data, ra-
ther than operating as a result of explicit programming. The other main branch of AI, often termed symbolic 
AI, relies on the explicit provision of logical statements, used to analyse and represent relationships between 
data, as opposed to learning from data as occurs in ML. 

Deep learning (DL) is a further subset of ML concerned with a specific type of algorithm called neural net-
works (discussed in more detail below) which derive their name and structural inspiration from the human 
brain. Like their biological namesake, artificial neural networks are comprised of layers of interconnected 
neurons, each neuron capable of performing calculations, allowing neural networks to model highly complex 
relationships in the data. 

 

 



   

 

Figure 1: Shows the relationship between deep learning, machine learning and artificial intelligence 

 

 

Today, the terms ‘machine learning’ and ‘artificial intelligence’ are often used interchangeably, as ML has 
come to be the dominant AI technique. However, in order to understand a little more about ML, it is important 
to consider first the history and evolution of AI. 

Coined in mid-1950s, the term AI was initially used to describe the process of solving logic problems and 
calculus on machines. Early programs were necessarily limited in scope by the speed and memory of pro-
cessors and by the relative clumsiness of early operating systems and programming languages. 

With a global increase in government funding for AI in the 1980s came increased development that paved 
the way for ML. New algorithms were developed that analysed data (what would now be called training data) 
by discarding seemingly unimportant data, in order to generate a set of general rules for the computer to fol-
low. This approach would later switch to one determining the probability of certain outcomes based on the 
data, instead of simply using the data to determine rules. 

The 1990s saw the development of computer programs that could analyse larger amounts of data, bringing 
with it a shift from a knowledge-driven approach to a data-driven approach producing predictive, or learned, 
outcomes. 

Despite algorithms producing useful results, obtaining results was slow, with model training sometimes ex-
ceeding days or even weeks. Consequently, ML remained an academic endeavour and had little industrial 
impact. This didn’t change until graphical processing units (GPUs), specialised electronic circuits initially de-
signed for the creation of images in gaming, started to be used to train models. This in turn vastly increased 
the amount of data that could be used for model training, which resulted in more accurate models. 

New development tools and packages were designed, reducing computational barriers for academics in 
fields outside of computing. Github, a provider of internet hosting for software development and version con-
trol, allowed collaboration on projects from anywhere in the world, and huge databases such as ImageNet, a 
database with 14 million labelled images also became more prevalent, providing vast quantities of collated 
data for use in training ML systems. 

In the early 2010s, frameworks, like Google’s Tensorflow and Facebook’s (as it was then called) PyTorch, 
that allowed users to conveniently build complex deep neural network models such as convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs) (explained in more detail below) were released on 
an open-source basis. 

Both the tools and the data required for developing useful ML models were now available to individuals out-
side of specialised ML groups in academia. 

More recently, in the natural language processing field, we have seen large model training such as BERT 
from Google and its relatives such as GPT-3 from Open AI and ERNIE from Baidu. These have been made 
possible by significant investments by private companies in compute resources, using ever larger collections 



   

 

of computers and processors. These larger frameworks proved that (provided there is enough data)—scaling 
up model size can lead to better task performance, producing often surprisingly human-like text. 

In July 2021, Google-owned Deepmind introduced Perceiver IO, a more general version of BERT, capable of 
producing ’a wide variety of outputs from many different inputs, making it applicable to real-world domains 
like language, vision and multimodal understanding as well as challenging games like StartCraft II’. 

For any neural network, the training phase of the model is the most resource-intensive task. Operations that 
would take years to perform sequentially can now be performed simultaneously using GPUs and other spe-
cialised processors, making the training of complex networks not only possible but fast and easy. The in-
creased availability, and ability to store and process, data have been paramount to the increased success 
and applicability of ML. In a new economy driven by ML technology, the importance of data to fuel it is ever 
increasing. 
 

The importance of data 

We discussed above how increased processing speed has allowed models to be trained on vast amounts of 
data in a relatively short period of time. As a result, data is now often the limiting factor in model quality. The 
type and amount of data will determine the type of ML model used, while the quality of the data will deter-
mine the quality of the result. You only need to look at the discounts offered by supermarkets in exchange for 
tracking your purchasing history via club cards, to start to understand the value of good quality data. 

Prior to model training, data analysis and exploration is typically carried out in order to better understand the 
collected data. 
 
Data collection 

An ML model learns using the data provided to it, so any biases in the dataset will be reflected in the trained 
model. Also, where a training dataset is too small, a model may learn only that dataset, and won’t be able to 
generalise, using an inferred model. It will be good at predicting the data it has seen but will produce signifi-
cant errors when asked to interpret new data. This is called overfitting and is discussed further below. 
 
Data analysis/visualisation 

Data analysis and visualisation are often used prior to training the model in order to understand the data, 
verify the quality of the data or decide how much of a given dataset to use. Visualisation techniques such as 
correlation matrices, line plots, scatter plots, histograms and box plots can provide insight into the most val-
uable variables in a dataset. 
 
Data exploration and transformation (also commonly referred to as pre-processing) 

Data exploration and transformation are used to ensure all the data is in the correct format to be provided as 
an input to the model. This may involve encoding written data so that it can be processed by the model. In 
addition, transformation may include filling in missing values, normalising the data, eliminating duplicates or 
removing or treating outliers where necessary. 

The importance of data quality cannot be overstated. Poor-quality data will not only render a model useless, 
but may have dangerous consequences. For example, there have been reported instances of algorithms 
used for predicting the sentencing of prisoners, trained on historical court data, giving out higher sentences 
to people of colour than to white people with equivalent crimes. In such cases, the training data was found to 
contain a historical bias, which was then perpetuated by the algorithm. 

It is important to remember that ML tools are not intelligent. They are capable of learning our mistakes but 
they cannot learn from them. 

Training an ML model 

ML models are designed and trained for the specific application for which they are used. Once developed 
and trained the computer then executes the algorithm. It is a common misconception to assume that you can 
simply give an ML algorithm a problem to solve and let the algorithm figure out how to solve it. In reality, ML 



   

 

is just a different way of computing. The algorithm has been designed and trained for the specific problem for 
which it is used and the computer simply executes the algorithm that has been developed. 

Training a model is the process of determining values for the parameters of the model in order to produce an 
accurate prediction from the input, or training, data. 

Where the model returns a bad prediction there will be a penalty, which is described as a ‘loss’ in ML. The 
loss of an ML model is a number that indicates how badly the model’s prediction performed on a single ex-
ample. The penalty or loss should be minimised with a loss of zero indicating a perfect prediction. The goal 
of training is to find a set of model parameters that have a low loss on average across all examples. 

Training an ML model, involves the following key stages: 
 

•  defining the problem—prior to training, the problem to be solved is identified and the potential 
inputs and outputs that would be required are considered 
 

•  data collection—data for training the model is then collected. As discussed above, the quanti-
ty and quality of data provided to the ML algorithm greatly affects the quality of the output 
 

•  model selection—both the desired outcome and the data that will be provided to the algorithm 
are considered in model selection. (Common ML algorithms are discussed in more detail be-
low) 
 

•  preparing the data—characteristics and attributes of the data are selected and the data is 
pre-processed, for example to remove outliers (values that are significantly different from the 
main dataset), remove or fill in missing values, scale and/or offset the data so it fits the as-
sumptions of the model to be trained 
 

•  training—the training dataset is provided to the model and the loss is minimised (as explained 
above) in order to improve the prediction rate and ascertain the model parameters that produce 
the best outcome 
 

•  test—a new dataset, consisting of data not used for training, is provided to the model to see 
how the model performs on new data it has not been trained on. If all goes well, the model 
should provide good predictions for the new data 

 
 

Types of ML 

The most prevalent type of ML is supervised learning, where the correct answer for the model output is used 
as a target for learning. 

The other two main types of ML are unsupervised learning and reinforcement learning. Unsupervised learn-
ing looks for patterns in data, typically by finding a statistically efficient representation of the data. In rein-
forcement learning, a correct output of the model is not known or provided, but instead the model is provided 
with broadly defined desired outcomes. The model works by seeking to maximise rewards for meeting the 
desired outcomes. 
 

Supervised learning 

With supervised learning the model is provided with input-output pairs. It learns by mapping input training 
data to outputs based on the example input-output pairs that it has been given. The correct output is known 
and is used to train the model. A supervised learning algorithm analyses the training data and produces an 
inferred model that can be used to map new inputs to predicted outputs. 

For example, a supervised ML model for predicting house prices would require a dataset of house price re-
lated information. The model’s data input values might include, for example, distance from the city centre, 
number of rooms, proximity to schools etc, often called feature vectors. The model outputs would be house 



   

 

price. The algorithm would be provided with input-output pairs (houses with different feature vectors as 
against their price). This would build a model which, upon input of a new feature vector for a new house, 
would output a predicted house price for the new house. 

In supervised learning, the dataset is composed of examples; where each example has an input element 
(feature vector) that will be provided to a model, and an output or target element (house price) that the model 
is expected to predict. 

Supervised learning can be further divided into two subcategories of ML: 
 

•  classification: seeks to assign a label to an unlabelled example. Classification learning algo-
rithms take a collection of labelled examples as inputs (as shown in Figure 2) and produce a 
model that can take an unlabelled example as input and either directly outputs a label or out-
puts a number that can be used to deduce the label. In a classification problem, the label is a 
member of a finite set of classes, such as ‘spam’, ‘not spam’ in the case of binary classification, 
or three or more classes in the case of multi-class classification. Examples of common classifi-
cation algorithms include: linear classifiers, support vector machines (SVM), decision trees, 
k-nearest neighbour, and random forest 
 

•  regression: seeks to predict a real-valued output (often called a target) given an input. The 
house price prediction mentioned above is an example of a regression task. A regression 
learning algorithm learns to output a continuous dependent variable given one or more contin-
uous independent variables. It is commonly used to make projections, such as for sales reve-
nue for a given business. Linear regression, logistical regression, and polynomial regression 
are popular regression algorithms. Neural networks are regression algorithms and are probably 
the most widely used today 

 

Figure 2: An example of classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unsupervised learning 

Unsupervised learning uses a model to discover patterns or associations in data. The goal is to create a 
model that takes a feature vector and transforms it into an output that represents patterns or other infor-
mation in the inputs in an interesting way. An example of this would be a model that is trained to represent 
pictures of handwritten digits learning that there are ten distinct patterns without being given any information 
as to what is in the pictures. 



   

 

Unsupervised learning is particularly useful when subject matter experts are unsure of what the common 
properties within a dataset are. In contrast with supervised learning, no example outcomes are required 
when training unsupervised learning model. The model is left alone to discover patterns in the input data. In 
unsupervised learning, the training data is a collection of unlabelled examples from which patterns are dis-
covered. 

Clustering is a commonly used unsupervised technique. Clustering is the process of clumping data into clus-
ters to see what groupings emerge (if any). Each cluster is characterised by its data points, and a cluster 
centroid in the middle of the data points. The cluster centroid is the mean (average) of all data points that the 
cluster contains. Clustering returns the properties of a cluster and the feature vectors that belong to each 
cluster. 

 

Figure 3: An example of clustering images of animals into groups of similar types of animals 

 

 

Common clustering algorithms are hierarchical (such as agglomerative hierarchical clustering, k-means, and 
Gaussian mixture models). 
 
 

Semi-supervised learning 

Semi-supervised learning is, as it sounds, a combination of supervised and unsupervised learning. The da-
taset contains both labelled and unlabelled examples. The goal is the same as the goal of supervised learn-
ing with the hope that using as many examples as possible, including unlabelled examples, will help the 
learning algorithm to find a better model or allow the user to deduce new information from the dataset. 
 

 



   

 

Reinforcement learning 

In reinforcement learning an ‘agent’ learns to operate in an environment using feedback. Unlike supervised 
or unsupervised learning, which typically both work with static datasets, reinforcement learning works with a 
dynamic dataset. This means that new data is continuously received by the model (the data provided to the 
model is continually changing) about each state. 

States are representations of the current environment of the task. In reinforcement learning the agent learns 
by making a decision at each state and receiving a reward (or punishment) for that decision with respect to 
the final result, in order to learn the series of decisions that produce the optimal overall outcome. 

For example, if you wanted to use reinforcement learning to teach a robot to walk to work, one state might be 
arriving at a particular road. A decision could then be whether or not to check for cars. The outcome of not 
checking could be an overall quicker journey to work (particularly if it is a road with very few cars), alterna-
tively the outcome could be the robot getting hit by a car. Therefore, the algorithm would learn the optimum 
set of decisions based on the overall outcome of arriving to work. 

Batch reinforcement learning (sometimes called offline reinforcement learning) is a variant of reinforcement 
learning where the agent learns from logged data, such as data from previous experiments. The same prin-
ciples as above apply, except the result of each state is already in the static dataset. 

 Importantly, the power of reinforcement learning is that the model does not need to be told what the right 
decision is for each state the agent finds itself in. Instead, all that is needed is a definition of a successful 
outcome, such as arriving to work safely. 
 

Considerations when selecting or assessing an ML algorithm 

A key factor that is considered when selecting an ML algorithm is its performance on the dataset at hand. 
Models may perform poorly for a number of reasons. Perhaps the most common beingpoor-quality data.  

Another common reason for poorly performing algorithms is overfitting. Overfitting is a term used to describe 
the situation where the model predicts the training data very well but performs badly on new data. Overfitting 
often results from models with a large number of parameters but a small number of training examples. The 
model learns the ‘noise’ in the data rather than the underlying structure. 

Underfitting is used to describe a poorly performing algorithm where the model is unable to predict the data it 
is trained on. Underfitting often results when the model is too simple for the data or the features are not in-
formative enough. 

As well as model performance per se, other factors that are often considered and discussed when explaining 
algorithm selection are: 
 

•  memory and processing requirement (linked to cost) 
•  number of feature/examples 
•  type of data—categorical/numerical 
•  nonlinearity of data 
•  training speed 
•  prediction speed 

 
 
 

Neural networks 

Neural networks, in particular, deep neural networks are by far the most prevalent ML technique. Neural 
networks derive their name and structural inspiration from the human brain. The term ‘neural network’, both 
in AI and in the brain, refers to a system of neurons. An artificial neural network does not depend on the ca-
pability of individual neurons. Each neuron performs simple mathematical functions. Rather, the effective-
ness of an artificial neural network is attributed to the very large number of neurons and the complexity of the 
resultant network. 



   

 

In its most simple form, a neural network is composed of three layers (with each layer being made up of 
neurons): 
 

•  an input layer 
•  a middle layer (referred to as a hidden layer), and 
•  an output layer 

In reality, the simple form is rarely used, and more common are neural networks with multiple hidden layers. 
This type of neural network is called a deep neural network and is illustrated below. 

Figure 4: Example structure of a deep neural network 

 

 

In the illustration above, each neuron is represented by a circle. The inbound arrow represents an input of a 
neuron and indicates where the input came from. The outbound arrow indicates the output of a neuron. The 
output of each neuron within a dashed box, is the result of a mathematical operation. 

Within each neuron in a dashed box, the following is happening: 
 

•  all the outputs from the neurons in the previous layer are combined to form inputs for the neu-
rons in the next layer 

•  each neuron in the next layer sums these inputs, giving each input from the previous layer a 
connection weight that tells you how strongly the previous layer neuron is connected to the next 
layer neuron 

•  each of the next layer neurons applies the connected weight through a function called an acti-
vation function to obtain an output 

•  these outputs are combined as inputs to the next layer and so forth 

The weights applied by the neurons are the parameters that define the network and are what is adjusted 
during training—these parameters are what is learned from the data. The information being learned about 
the data is contained in the connection weights of the network. 

The architecture of the network does not change during learning, however, the output values of each neuron 
change with each input to the network. In other words, the memory of the network is in the connection 
weights and not in the neurons. This can seem counter-intuitive but it is precisely how we believe the brain 
works. 
 
 
 
 



   

 

What is deep learning? 

DL is a subset of ML using deep neural networks (neural networks with numerous hidden layers). The use of 
more than one hidden layer in a neural network provides a larger number of free parameters due to the in-
creased number of connections between neurons and allows the network to learn levels of abstraction from 
one layer to the next. Again, this is akin to how the brain works—for example, your visual cortex has areas 
that react to lines and corners in images that connect to areas that react to shapes made up of lines and 
corners, and so forth. The result is a highly complex model capable of modelling complex data. 
 

Common neural network architectures 

There are many different types of neural network architectures, each suited to different learning tasks. The 
most common types are: feedforward neural networks (FFNNs); RNNs; and CNNs. 
 
Feed-forward neural networks 

The most frequently used illustrative example when discussing neural networks, is that of the FFNN. The DL 
neural network illustrated and discussed above is an FFNN. Feed-forward simply refers to the direction that 
the information moves through the layers. The simplest type of an FFNN is a fully connected FFNN, in which 
all neurons are interconnected from one layer to the next. 
 
Convolutional neural networks 

A CNN is a type of FFNN that reduces the number of connection weights by structuring how neurons are 
connected, organising the connections into groups called ‘receptive fields’—another term borrowed from the 
study of the brain. CNNs have applications in image classification and object recognition tasks since they 
reduce images into a form that is easier to process without losing features that are critical for getting a good 
prediction. The receptive field structure of CNNs is loosely modelled on how the layers of our visual cortex 
interconnect. 
 
Recurrent neural networks 

RNNs are used to label, classify or generate sequences. RNNs are often used in text processing because 
sentences and texts can be thought of simply as sequences of some sort (words/punctuation/characters etc). 

An RNN is not a feed-forward network. It contains loops. Each unit of a current network has a state (or 
memory) such that each unit receives a vector of states from the previous layer and a vector of states from 
the same layer at the previous time in the sequence. This allows RNNs to produce predictive results in se-
quential data. 

 



   

 

Transformer networks 

Transformer networks are rapidly gaining popularity and have overtaken RNNs in the natural language pro-
cessing arena. Like RNNs, transformer networks are designed to handle sequential data. Unlike RNNs, they 
do not process the data in order and avoid loops by processing a text sequence as a whole. In other words, 
transformers look at all of a sequence of text at the same time. That makes them much more efficient to im-
plement than RNNs because the operations can be done in parallel processing hardware (rather than se-
quentially one after the other), which speeds up computation. 

The magic ingredient in transformers is ‘attention’. The network learns which part of the sequence to focus 
on, or, in other words, where to look for context for any given part of the sequence. This is akin to us paying 
attention to certain parts of the text in a sentence for context, rather than reading all the words in the sen-
tence all at the same time. 
 
Using deep learning 

The big advantage of DL over other types of ML is its ability to handle large amounts of data. Unlike other 
types of ML where learning converges at a certain level of performance when you add more training data to 
the algorithm, a key advantage of DL networks is that they often continue to improve as the size of the da-
taset increases, provided that there are sufficient (huge amounts) of connection weights to adjust. The most 
powerful DL networks used today have hundreds of billions of connection weights, many orders of magnitude 
more than the number of parameters typically available to tweak in other types of ML. 

DL has a multitude of applications in almost every field and is particularly popular in the health care industry, 
the finance sector and in image recognition. 

However, there are recognised concerns connected with the use and deployment of DL technologies. By its 
nature, there is often no clear way to investigate, undo or discover the reasoning behind each prediction 
made in DL. This makes it difficult to use in fields where there are legal requirements to provide justifications 
or reasons for decisions that have been made—such as the granting or rejecting of loans. Further, the trend 
to ever larger models means that ever increasing amounts of computing power is needed to train these 
models, meaning that state of the art DL is a game dominated by private sector tech giants. 
 

Some examples of other commonly used ML algorithms 

Outside of DL, other approaches can yield powerful results with far less need for computing power. Some of 
the most frequently used supervised ML algorithms include: 
 

•  linear regression 
•  logistic regression 
•  decision tree learning 
•  k-nearest neighbours 

Unsupervised learning algorithms mostly include clustering algorithms for practical applications. A general 
introduction to clustering is covered below. Reinforcement learning is another exciting field of research but 
further discussion of it is beyond the scope of this Practice Note. 
 
Linear regression 

Linear regression is a supervised learning algorithm where a model is trained to predict a value of a de-
pendent variable ‘y’ for a given independent variable ‘x’, often a measurement of some kind. Since it is a su-
pervised model, labelled examples are required to train the model, ie. pairs of x and y values are used for the 
training data. 

Example problem: Learn to predict the price (y) of a house given information about the house (x) such as the 
number of rooms (x1), distance from a city (x2), square ft (x3) etc. 
 
 
 



   

 

Logistic regression 

Unlike linear regression, logistic regression is a classification learning algorithm. The goal is to learn a value 
of ‘y’ for a given ‘x’ where ‘y’ is the probability of one or more classes or outcomes. 

Example problem: Given x hours of study, predict how likely it is that the student passes an exam (y is the 
probability of passing). 
 
Decision tree learning 

A decision tree is a data structure that can be used to make decisions. Each node of the decision tree pre-
sents an attribute or feature and the branch from each node represents the outcome of that node. The algo-
rithm identifies ways to split data at each attribute in order to predict the value of the target variable by learn-
ing simple decision rules inferred from the data features and evaluating how good each split is. 

Example problem: Predicting whether or not your partner will go on a run given the weather forecast. The ML 
receives a feature vector (set of numbers) describing the weather conditions—wind strength, humidity, cloud 
coverage, rain etc. Passing those feature vectors through the decision tree will produce the decision output. 

Figure 6: Example of a decision tree to predict whether or not your partner will go on a run 

 

 

Random forests are a learning model which uses a combination of many decision trees. Typically, each indi-
vidual decision tree in the random forest outputs a weak prediction and the prediction from all trees are com-
bined to produce a strong prediction. For example, each tree can ‘vote’ for its prediction and the prediction 
with the most votes is the output; the prediction for the random forest. 
 
K-nearest neighbours 

K-nearest neighbours algorithms work on the principle that similar things exist in close proximity. New ob-
jects are assigned to the class most common among their k-nearest neighbours or are given a property value 
based on values of their k-nearest neighbours. K is a number that tells the algorithm how many neighbours 
to look at. Unlike the above algorithms, k-nearest neighbours keep all training data in model memory and use 
the data each time it is asked to output a class or property value for a new object. Often, what makes or 
breaks the algorithm is the quality of the feature vectors—the numbers used to characterise the objects. If 
the features are chosen so that objects similar in the property of interest group together, and are far away 
from objects that differ in that property, k-nearest neighbours can work well. 

Example problem: Classify an image of an animal that looks similar to a cat or a dog into either the cat or 
dog class. Feature vectors that describe eye shape, body shape, sharpness of nails/claws etc would work 
well here but, for example, fur colour would not as it is not a feature which would effectively differentiate as 
between cats and dogs. 



   

 

Clustering 

Clustering is an unsupervised learning algorithm used to find structure in unlabelled data. It can be thought of 
as the separating of objects into groups whose members are similar in some way. A cluster is therefore a 
collection of similar objects. 

Example problem: Finding groups of people with different characteristics in the population based on their 
online behaviour for marketing purposes. 
 

Key challenges for AI and ML—transparency, explainability and bias 

For some types of AI system there may be no easy way for a human to understand how the system reached 
a particular conclusion. It may not be possible for humans to review the decisions made by the system either 
before they are affected, or after (eg where the underlying data, code or algorithms are withheld on the 
grounds of trade secret or proprietary information). Often, AI solutions are referred to as ‘black boxes’, as the 
algorithms and datasets on which they are programmed are not open or available for review or audit. There 
is much research and development going into dealing with this problem. The field of research is often called 
‘Explainable AI’. 

As well as being difficult to discover the logic behind a particular action or decision made by the system, 
there is also a balancing of commercial interest at play. Commercial organisations invest a lot into develop-
ment of AI systems and are keen to protect their investment and their exposure to liability. If making a sys-
tem explainable and decisions transparent means exposing how a system is designed, this may be contrary 
to an organisation’s commercial interest. That said, explainability and transparency are some of the key in-
gredients that will be needed for wider adoption and acceptance of AI technology, so it will be interesting to 
see how this tension plays out. 

Because AI systems learn to make their decisions based on the training data that they have been given, any 
bias which may be included in that data, will also be learned by the algorithm and reflected in the subsequent 
model. Even if obvious variables are removed from the input, such as gender, race or sexual orientation, 
other, more subtle, social or historical inequalities may remain. For example, Amazon stopped using a hiring 
algorithm when it became clear that it was favouring applicants based on words like ‘executed’ or ‘captured’, 
being terms that tended to be more commonly found in men’s CVs. 

Bias can also find its way into an AI system through flawed data sampling (sample bias or selection bias), 
where certain groups are over or under represented in the training data. For example, facial recognition algo-
rithms trained mainly on Caucasian faces will not work well for ethnic minority faces. If such algorithms 
where used to control access to, say banking or other services, this could perpetuate social exclusion. 

Labelling bias occurs where there are inconsistencies in the labelling process. This type of bias commonly 
arises when different annotators give different labels to the same type of object (for example, sofa and set-
tee). It may also occur where the annotator applies a subjective (as opposed to an objective) label to the da-
ta, reflecting subjective preferences of the annotator. 

Negative set bias occurs where there are not enough samples given to define what a phenomenon ‘is not’ 
(negative instances), only examples of what a phenomenon ‘is’ (positive instances). As a result, the algo-
rithm may struggle to identify negative instances as easily as positive. 

Human decision making is also likely to be biased but AI provides an opportunity to improve on traditional 
human decision making. Where variables do not accurately predict outcomes in the available data, ML can 
learn to disregard them, in contrast to humans who may be oblivious to the factors that led them to make a 
decision. It is also possible to probe an AI system to discover bias. Even where DL technologies are used, it 
may be possible to obtain more information about the decision made than it would be to uncover our own 
unconscious biases. 

In November 2020, the Centre for Data Ethics and Innovation (CDEI) published its review into biases in algo-
rithmic decision-making, recommending that the UK mandate transparency obligations on public sector or-
ganisations with respect to decisions made about individuals.  



   

 

The report recognised the difficulties inherent in navigating the analytical techniques necessary to expose 
and identify bias. It recommended that regulators and industry bodies work together to identify best practice 
in their industry and to establish appropriate regulatory standards. 

The CDEI review into bias in algorithmic decision-making stated as a core theme of the report, the ‘ethical 
obligation to act wherever there is a risk that bias is causing harm and instead make fairer, better choices’. 
 

The report recognised the difficulties inherent in navigating the analytical techniques necessary to expose 
and identify bias. It recommended that regulators and industry bodies work together to identify best practice 
in their industry and to establish appropriate regulatory standards. 

In November 2021, the UK government published an algorithmic transparency standard for government de-
partments and public sector bodies, promoting transparency in the way in which algorithmic tools are used to 
support decisions, particularly decisions with a legal or economic impact. The standard was accompanied by 
a new template and guidance on how to use algorithmic tools to support decisions. 
 

Privacy and data protection 

Under the General Data Protection Regulation (GDPR), there are specific requirements for the provision of 
information about and the explanation of AI-assisted decisions. Other key data protection principles will also, 
by necessity, require explainability for compliance. The Information Commissioner’s Office’s (ICO) Explain 
Guidance sets out practical guidance for compliance with the UK GDPR’s explainability requirements. The 
ICO has also produced Guidance on AI and Data which looks at explainability of AI from an audit and com-
pliance perspective. As a general point, it notes that ‘black box’ models (typically based on DL where the 
logic of the system may be difficult to explain) should only be used where: 
 

•  the potential impact and risks have been thoroughly considered in advance and the use case 
and organisational capacities/resources support the responsible design and implementation of 
such systems, and 
 

•  the system includes supplemental interpretation tools that provide a domain-appropriate level 
of explainability 

 

Protecting AI technology 

There is considerable investment and value at each stage of the AI development and deployment, and pro-
tecting that investment and the ownership of any rights in the AI is a key factor. AI challenges protection 
through traditional intellectual property mechanisms in numerous ways, raising niche issues depending on 
the type and functionality of the AI in question. Detailed consideration of those challenges is beyond the 
scope of this Practice Note. 
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